Data Sharing is a Production Need

The concept of “Production” in the area of Information Technology is well understood. It means something (usually an application or system) is ready to support business processing in a reliable manner. Production environments undergo thorough testing to ensure that there’s minimal likelihood of a circumstance where business activities are affected. The Production label isn’t thrown around recklessly; if a system is characterized as Production, there are lots of business people dependent on those systems to get their job done.
In order to support Production, most IT organizations have devoted resources focused solely on maintaining Production systems to ensure that any problem is addressed quickly. When user applications are characterized as Production, there’s special processes (and manpower) in place to address installation, training, setup, and ongoing support. Production systems are business critical to a company.
One of the challenges in the world of data is that most IT organizations view their managed assets as storage, systems, and applications. Data is treated not as an asset, but as a byproduct of an application. Data storage is managed based on application needs (online storage, archival, backup, etc.) and data sharing is handled as a one-off activity. This might have made sense in the 70’s and 80’s when most systems were vendor specific and sharing data was rare; however, in today’s world of analytics and data-driven decision making, data sharing has become a necessity. We know that every time data is created, there are likely 10-12 business activities requiring access to that data.
Data sharing is a production business need.
Unfortunately, the concept of data sharing in most companies is a handled as a one-off, custom event. Getting a copy of data often requires tribal knowledge, relationships, and a personal request. While there’s no arguing that many companies have data warehouses (or data marts, data lakes, etc.), adding new data to those systems is where I’m focused. Adding new data or integrating 3rd party content into a report takes a long time because data sharing is always an afterthought.
Think I’m exaggerating or incorrect? Ask yourself the following questions…
- Is there a documented list of data sources, their content, and a description of the content at your company?
- Do your source systems generate standard extracts, or do they generate 100s (or 1000’s) of nightly files that have been custom built to support data sharing?
- How long does it take to get a copy of data (that isn’t already loaded on the data warehouse)?
- Is there anyone to contact if you want to get a new copy of data?
- Is anyone responsible for ensuring that the data feeds (or extracts) that currently exist are monitored and maintained?
While most IT organizations have focused their code development efforts on reuse, economies-of-scale, and reliability, they haven’t focused their data development efforts in that manner. And one of the most visible challenges is that many IT organizations don’t have a funding model to support data development and data sharing as a separate discipline. They’re focused on building and delivering applications, not building and delivering data. Supporting data sharing as a production business need means adjusting IT responsibilities and priorities to reflect data sharing as a responsibility. This means making sure there are standard extracts (or data interfaces) that everyone can access, data catalogs available containing source system information, and staff resources devoted to sharing and supporting data in a scalable, reliable, and cost-efficient manner. It’s about having an efficient data supply chain to share data within your company. It’s because data sharing is a production business need.
Or, you could continue building everything in a one-off custom manner.
Data Strategy Component: Provision

This blog is the 2nd in a series focused on reviewing the individual Components of a Data Strategy. This edition discusses the concept of data provisioning and the various details of making data sharable.
The definition of Provision is:
“Supplying data in a sharable form while respecting all rules and access guidelines”
One of the biggest frustrations that I have in the world of data is that few organizations have established data sharing as a responsibility. Even fewer have setup the data to be ready to share and use by others. It’s not uncommon for a database programmer or report developer to have to retrieve data from a dozen different systems to obtain the data they need. And, the data arrives in different formats and files that change regularly. This lack of consistency generates large ongoing maintenance costs and requires an inordinate amount of developer time to re-transform, prepare, fix data to be used (numerous studies have found that ongoing source data maintenance can take as much of 50% of the database developers time after the initial programming effort is completed).
Should a user have to know the details (or idiosyncrasies) of the application system that created the data to use the data? (That’s like expecting someone to understand the farming of tomatoes and manufacturing process of ketchup in order to be able to put ketchup on their hamburger). The idea of Provision is to establish the necessary rigor to simplify the sharing of data.
I’ve identified 5 of the most common facets of data sharing in the illustration above – there are others. As a reminder (from last week’s blog), each facet should be considered individually. And because your Data Strategy goals will focus on future aspirational goals as well as current needs, you’ll likely to want to review the different options for each facet. Each facet can target a small organization’s issues or expand to address a diverse enterprise’s needs.
Packaging
This is the most obvious aspect of provisioning: structuring and formatting the data in a clear and understandable manner to the data consumer. All too often data is packaged at the convenience of the developer instead of the convenience of the user. So, instead of sharing data as a backup file generated by an application utility in a proprietary (or binary) format, the data should be formatted so every field is labeled and formatted (text, XML) for a non-technical user to access using easily available tools. The data should also be accompanied with metadata to simplify access.
Platform Access
This facet works with Packaging and addresses the details associated with the data container. Data can be shared via a file, a database table, an API, or one of several other methods. While sharing data in a programmer generated file is better than nothing, a more effective approach would be to deliver data in a well-known file format (such as Excel) or within a table contained in an easily accessible database (e.g. data lake or data warehouse).
Stewardship
Source data stewardship is critical in the sharing of data. In this context, a Source Data Steward is someone that is responsible for supporting and maintaining the shared data content (there several different types of data stewards). In some companies, there’s a data steward responsible for the data originating from an individual source system. Some companies (focused on sharing enterprise-level content) have positioned data stewards to support individual subject areas. Regardless of the model used, the data steward tracks and communicates source data changes, monitors and maintains the shared content, and addresses support needs. This particular role is vital if your organization is undertaking any sort of data self-service initiative.
Acceptance Checking
This item addresses the issues that are common in the world of electronic data sharing: inconsistency, change, and error. Acceptance checking is a quality control process that reviews the data prior to distribution to confirm that it matches a set of criteria to ensure that all downstream users receive content as they expect. This item is likely the easiest of all details to implement given the power of existing data quality and data profiling tools. Unfortunately, it rarely receives attention because of most organization’s limited experience with data quality technology.
Data Audience
In order to succeed in any sort of data sharing initiative, whether in supporting other developers or an enterprise data self-service initiative, it’s important to identify the audience that will be supported. This is often the facet to consider first, and it’s valuable to align the audience with the timeframe of data sharing support. It’s fairly common to focus on delivering data sharing for developers support first followed by technical users and then the large audience of business users.
In the era of “data is a business asset” , data sharing isn’t a courtesy, it’s an obligation. Data sharing shouldn’t occur at the convenience of the data producer, it should be packaged and made available for the ease of the user.
Project Success = Data Usability
One of the challenges in delivering successful data-centric projects (e.g. analytics, BI, or reporting) is realizing that the definition of project success differs from traditional IT application projects. Success for a traditional application (or operational) project is often described in terms of transaction volumes, functional capabilities, processing conformance, and response time; data project success is often described in terms of business process analysis, decision enablement, or business situation measurement. To a business user, the success of a data-centric project is simple: data usability.
It seems that most folks respond to data usability issues by gravitating towards a discussion about data accuracy or data quality; I actually think the more appropriate discussion is data knowledge. I don’t think anyone would argue that to make data-enabled decisions, you need to have knowledge about the underlying data. The challenge is understanding what level of knowledge is necessary. If you ask a BI or Data Warehouse person, their answer almost always includes metadata, data lineage, and a data dictionary. If you ask a data mining person, they often just want specific attributes and their descriptions — they don’t care about anything else. All of these folks have different views of data usability and varying levels (and needs) for data knowledge.
One way to improve data usability is to target and differentiate the user audience based on their data knowledge needs. There are certainly lots of different approaches to categorizing users; in fact, every analyst firm and vendor has their own model to describe different audience segments. One of the problems with these types of models is that they tend to focus heavily on the tools or analytical methods (canned reports, drill down, etc.) and ignore the details of data content and complexity. The knowledge required to manipulate a single subject area (revenue or customer or usage) is significantly less than the skills required to manipulate data across 3 subject areas (revenue, customer, and usage). And what exacerbates data knowledge growth is the inevitable plethora of value gaps, inaccuracies, and inconsistencies associated with the data. Data knowledge isn’t just limited to understanding the data; it includes understanding how to work around all of the imperfections.
Here’s a model that categories and describes business users based on their views of data usability and their data knowledge needs
Level 1: “Can you explain these numbers to me?”
This person is the casual data user. They have access to a zillion reports that have been identified by their predecessors and they focus their effort on acting on the numbers they get. They’re not a data analyst – their focus is to understand the meaning of the details so they can do their job. They assume that the data has been checked, rechecked, and vetted by lots of folks in advance of their receiving the content. They believe the numbers and they act on what they see.
Level 2: “Give me the details”
This person has been using canned reports, understands all the basic details, and has graduated to using data to answer new questions that weren’t identified by their predecessors. They need detailed data and they want to reorganize the details to suit their specific needs (“I don’t want weekly revenue breakdowns – I want to compare weekday revenue to weekend revenue”). They realize the data is imperfect (and in most instances, they’ll live with it). They want the detail.
Level 3: “I don’t believe the data — please fix it”
These folks know their area of the business inside/out and they know the data. They scour and review the details to diagnose the business problems they’re analyzing. And when they find a data mistake or inaccuracy, they aren’t shy about raising their hand. Whether they’re a data analyst that uses SQL or a statistician with their favorite advanced analytics algorithms, they focus on identifying business anomalies. These folks are the power users that are incredibly valuable and often the most difficult for IT to please.
Level 4: “Give me more data”
This is subject area graduation. At this point, the user has become self-sufficient with their data and needs more content to address a new or more complex set of business analysis needs. Asking for more data – whether a new source or more detail – indicates that the person has exhausted their options in using the data they have available. When someone has the capacity to learn a new subject area or take on more detailed content, they’re illustrating a higher level of data knowledge.
One thing to consider about the above model is that a user will have varying data knowledge based on the individual subject area. A marketing person may be completely self-sufficient on revenue data but be a newbie with usage details. A customer support person may be an expert on customer data but only have limited knowledge of product data. You wouldn’t expect many folks (outside of IT) to be experts on all of the existing data subject areas. Their knowledge is going to reflect the breadth of their job responsibilities.
As someone grows and evolves in business expertise and influence, it’s only natural that their business information needs would grow and evolve too. In order to address data usability (and project success), maybe it makes sense to reconsider the various user audience categories and how they are defined. Growing data knowledge isn’t about making everyone data gurus; it’s about enabling staff members to become self-sufficient in their use of corporate data to do their jobs.